Сайт о доме, строительстве, саде и огороде!

Что такое диод для чайников

chto takoe diod dlja chajnikov 4

Содержание

Принцип работы диода

В области анода (p-типа), основными носителями заряда являются положительно заряженные дырки, а в области катода (n-типа) — отрицательно заряженные электроны. Выводы диода представляют собой контактные металлические поверхности к которым и припаяны выводы.

Что такое диод, устройство и принцип работы диодов, типы диодов, для чего они применяются

Диод — простейший полупроводниковый прибор, который можно встретить сегодня на печатной плате любого электронного устройства. В зависимости от внутренней структуры и технических характеристик, диоды классифицируются на нескольких видов: универсальные, выпрямительные, импульсные, стабилитроны, туннельные диоды и варикапы.

Диоды применяются для выпрямления, ограничения напряжения, детектирования, модуляции, в качестве защитных элементов и т. д. — в зависимости от назначения устройства, в котором применяются.

Выпрямительные диоды предназначены для выпрямления переменного тока низкой частоты в пульсирующий ток одного направления.

Основа диода — p-n-переход, сформированный полупроводниковыми материалами с двумя разными типами проводимости. К кристаллу диода присоединены два вывода, называемые катод (минусовой электрод) и анод (плюсовой электрод). На стороне анода находится область полупроводника p-типа, а на стороне катода — область n-типа.

Данное устройство диода обеспечивает ему уникальное свойство — он проводит ток лишь в одном (прямом) направлении, от анода — к катоду. В обратном направлении обычный исправный диод ток не проводит.

В области анода (p-типа), основными носителями заряда являются положительно заряженные дырки, а в области катода (n-типа) — отрицательно заряженные электроны. Выводы диода представляют собой контактные металлические поверхности к которым и припаяны выводы.

Когда диод проводит ток в прямом направлении, это значит что он находится в открытом состоянии. Если ток через p-n-переход не идет, значит диод закрыт. Таким образом, диод может находиться в одном из двух устойчивых состояний: или открыт или закрыт.

Включив диод в цепь источника постоянного напряжения, анодом к плюсовой клемме, а катодом — к минусовой, получим смещение p-n-перехода в прямом направлении. И если напряжение источника окажется достаточным (для кремниевого диода хватит 0,7 вольт), то диод откроется и начнет проводить ток. Величина этого тока будет зависеть от величины приложенного напряжения и от внутреннего сопротивления диода.

Почему диод перешел в проводящее состояние? Потому что при правильном включении диода, электроны из n-области, под действием ЭДС источника, устремились к его положительному электроду, навстречу дыркам из p-области, которые теперь движутся в сторону отрицательного электрода источника, навстречу электронам.

На границе областей (на самом p-n-переходе) в это время происходит рекомбинация электронов и дырок, их взаимное поглощение. А источник вынужден непрерывно поставлять новые электроны и дырки в область p-n-перехода, увеличивая их концентрацию.

А что случится если диод включить наоборот, катодом к плюсовой клемме источника, а анодом — к минусовой? Дырки и электроны разбегутся в разные стороны — к выводам — от перехода, и в окрестности перехода возникнет зона обедненная носителями заряда — потенциальный барьер. Ток обусловленный основными носителями заряда (электронами и дырками) попросту не возникнет.

Но кристалл диода не идеален, в нем кроме основных носителей заряда присутствуют еще и неосновные носители заряда, которые и создадут очень незначительный обратный ток диода, измеряемый микроамперами. Но диод в данном состоянии закрыт, так как p-n-переход его смещен в обратном направлении.

К основным параметрам выпрямительного диода относятся прямой и обратный токи, выпрямленный ток, прямое и обратное напряжение, дифференциальное сопротивление, максимальная рабочая частота.

Напряжение, при котором диод переходит из закрытого состояния в открытое, называется прямым напряжением диода (смотрите — Основные параметры диодов), которое по сути является падением напряжения на p-n-переходе.

Сопротивление диода току в прямом направлении не постоянно, оно зависит от величины тока через диод и имеет размер порядка единиц Ом. Напряжение обратной полярности, при котором диод закрывается, называется обратным напряжением диода. Обратное сопротивление диода в этом состоянии измеряется тысячами Ом.

Очевидно, диод может переходить из открытого состояния в закрытое и обратно при смене полярности приложенного к нему напряжения. На данном свойстве диода основана работа выпрямителя.

Так, в цепи синусоидального переменного тока диод будет проводить ток лишь во время положительной полуволны, а во время отрицательной — будет заперт.

Выпрямитель — это устройство, которое преобразует переменный ток в постоянный. Основными функциональными элементами являются диоды, которые пропускают ток только в одном направлении. Подходящим расположением диодов переменный ток в однофазной или трехфазной цепи преобразуется в пульсирующий, но однонаправленный ток. Для сглаживания результирующего тока можно использовать конденсаторы.

Нормальная работа диода в режиме выпрямления возможна в том случае, когда обратное напряжение не превышает пробивного значения, а выпрямленный ток не больше номинально допустимого при нормальной температуре диода. С повышением температуры диода прямой и обратный ток увеличиваются, а с понижением — уменьшаются. Пробивное напряжение с повышением температуры снижается.

Границы режимов, при которых диод работает с заданной надежностью, определяются предельными параметрами. К предельным параметрам относятся максимальные значения выпрямленного тока, допустимой мощности рассеяния на диоде, его рабочей температуры, пикового обратного напряжения.

Самые распространенные типы диодов:

  • Выпрямительные диоды: эти диоды используются в схемах выпрямления переменного тока в постоянный. Они медленные, предназначены для работы с низкочастотными цепями, оптимизированы для низких потерь проводимости и могут выдерживать только умеренные динамические нагрузки. Типичное значение ton для силового диода составляет 5–20 мкс, а toff 20–100 мкс (соотношение Ton/Tof определяем быстродействие диода) . Номинальное напряжение варьируется от нескольких сотен вольт до 10 кВ, а номинальный ток варьируется в диапазоне от 1 А до 10 кА.
  • Диоды с быстрым восстановлением: обычно это диоды-компаньоны для быстрых переключателей, таких как IGBT. Эти диоды оптимизированы для высоких динамических нагрузок, а также для применения в электронных переключателях. Типичное время ton находится в диапазоне несколько наносекунд, а типичное время toff находится в диапазоне от нескольких десятков наносекунд до нескольких микросекунд, в зависимости от номинала диода. Доступны номинальные значения напряжения и тока до 6 кВ и 3 кА соответственно.
  • Быстродействующие диоды: они оптимизированы для высокочастотных приложений, таких как высокочастотные выпрямители в импульсных источниках питания. У них очень малое время восстановления (от 1 нс до 5 мкс). Номинальная мощность варьируется от нескольких сотен милливатт до нескольких киловатт.
  • Диоды Шоттки: эти диоды имеют очень низкое падение напряжения в открытом состоянии и очень быстрое переключение. Падение напряжения в открытом состоянии может составлять всего 0,1–0,7 В. Для многих приложений, таких как высокочастотные выпрямители в источниках питания низкого напряжения, требуются быстродействующие диоды с низким падением напряжения в открытом состоянии. Диод Шоттки формируется путем нелинейного контакта между полупроводником N-типа (катод) и металлом (анод), создавая барьер Шоттки. Ток возникает из-за основных носителей, в результате чего незначительные неосновные носители сохраняются в дрейфовой области. Это значительно сокращает время выключения устройства. Диоды Шоттки на основе кремния имеют очень низкую (
  • Стабилитроны: это диоды специального назначения, которые позволяют току течь в прямом, а также в обратном направлении. В обратном направлении они предназначены для работы в области пробоя. Стабилитроны рассчитаны на низкое напряжение пробоя, обычно от нескольких вольт до максимума 1 кВ. Прямой ток будет находиться в диапазоне от нескольких микроампер до 200 А.
  • Светоизлучающие диоды: светоизлучающие диоды (СИД) излучают свет при активации. Они используются в основном в качестве индикаторов и элементов отображения информации. В последнее время их стали использовать для освещения.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Выпрямительные диоды

Работа выпрямительного диода объясняется свойствами электрического p–n-перехода.

Полупроводники. Как работают транзисторы и диоды. Самое понятное объяснение!

Вблизи границы двух полупроводников образуется слой, лишенный подвижных носителей заряда (из-за рекомбинации) и обладающий высоким электрическим сопротивлением, – так называемый запирающий слой. Этот слой определяет контактную разность потенциалов (потенциальный барьер).

Если к p–n-переходу приложить внешнее напряжение, создающее электрическое поле в направлении, противоположном полю электрического слоя, то толщина этого слоя уменьшится и при напряжении 0,4 — 0,6 В запирающий слой исчезнет, а ток существенно возрастет (этот ток называют прямым).

Что такое диод для чайников

При подключении внешнего напряжения другой полярности запирающий слой увеличится и сопротивление p–n-перехода возрастет, а ток, обусловленный движением неосновных носителей заряда, будет незначительным даже при сравнительно больших напряжениях.

Прямой ток диода создается основными, а обратный – неосновными носителями заряда. Положительный (прямой) ток диод пропускает в направлении от анода к катоду.

На рис. 1 показаны условное графическое обозначение (УГО) и характеристики выпрямительных диодов (их идеальная и реальная вольт-амперная характеристики). Видимый излом вольт-амперной характеристики диода (ВАХ) в начале координат связан с различными масштабами токов и напряжений в первом и третьем квадранте графика. Два вывода диода: анод А и катод К в УГО не обозначаются и на рисунке показаны для пояснения.

На вольт-амперная характеристика реального диода обозначена область электрического пробоя, когда при небольшом увеличении обратного напряжения ток резко возрастает.

Электрический пробой является обратимым явлением. При возвращении в рабочую область диод не теряет своих свойств. Если обратный ток превысит определенное значение, то электрический пробой перейдет в необратимый тепловой с выходом прибора из строя.

Рис. 1. Полупроводниковый выпрямительный диод: а – условное графическое изображение, б – идеальная вольт-амперная характеристика, в – реальная вольт-амперная характеристика

Промышленностью в основном выпускаются германиевые (Ge) и кремниевые (Si) диоды.

Кремниевые диоды обладают малыми обратными токами, более высокой рабочей температурой (150 — 200 °С против 80 — 100 °С), выдерживают большие обратные напряжения и плотности тока (60 — 80 А/см2 против 20 — 40 А/см2). Кроме того, кремний – широко распространенный элемент (в отличие от германиевых диодов, который относится к редкоземельным элементам).

К преимуществам германиевых диодов можно отнести малое падение напряжения при протекании прямого тока (0,3 — 0,6 В против 0,8 — 1,2 В). Кроме названных полупроводниковых материалов, в сверхвысокочастотных цепях используют арсенид галлия GaAs.

Полупроводниковые диоды по технологии изготовления делятся на два класса: точечные и плоскостные.

Точечный диод образуют Si- или Ge-пластина n-типа площадью 0,5 — 1,5 мм2 и стальная игла, образующая p–n-переход в месте контакта. В результате малой площади переход имеет малую емкость, следовательно, такой диод способен работать в высокочастотных цепях. Но ток через переход не может быть большим (обычно не более 100 мА).

Плоскостной диод состоит из двух соединенных Si- или Ge-пластин с разной электропроводностью. Большая площадь контакта ведет к большой емкости перехода и относительно низкой рабочей частоте, но проходящий ток может быть большим (до 6000 А).

Основными параметрами выпрямительных диодов являются:

  • максимально допустимый прямой ток Iпр.max,
  • максимально допустимое обратное напряжение Uобр.max,
  • максимально допустимая частота fmax.

По первому параметру выпрямительные диоды делят на диоды:

  • малой мощности, прямой ток до 300 мА,
  • средней мощности, прямой ток 300 мА — 10 А,
  • большой мощности – силовые, максимальный прямой ток определяется классом и составляет 10, 16, 25, 40 — 1600 А.

Импульсные диоды применяются в маломощных схемах с импульсным характером подводимого напряжения. Отличительное требование к ним – малое время перехода из закрытого состояния в открытое и обратно (типичное время 0,1 — 100 мкс). УГО импульсных диодов такое же, как у выпрямительных диодов.

Что такое диод для чайников

Рис.2. Переходные процессы в импульсных диодах: а – зависимость тока при переключении напряжения с прямого на обратное, б – зависимость напряжения при прохождении через диод импульса прямого тока

К специфическим параметрам импульсных диодов относятся:

Принцип работы диода

  • время восстановления Tвосст
  • это интервал времени между моментом переключения напряжения на диоде с прямого на обратное и моментом, когда обратный ток уменьшится до заданного значения (рис 2,а),
  • время установления Tуст – это интервал времени между началом протекания через диод прямого тока заданной величины и моментом, когда напряжение на диоде достигнет 1,2 установившегося значения (рис 2,б),
  • максимальный ток восстановления Iобр.имп.макс., равный наибольшему значению обратного тока через диод после переключения напряжения с прямого на обратное (рис 2,а).

Обращенные диоды получают при концентрации примесей в p- и n-областях большей, чем у обычных выпрямительных диодов. Такой диод оказывает малое сопротивление проходящему току при обратном включении (рис.3) и сравнительно большое сопротивление при прямом включении. Поэтому их применяют при выпрямлении малых сигналов с амплитудой напряжения в несколько десятых вольта.

Что такое диод для чайников

Рис. 3. УГО и ВАХ обращенных диодов

Диоды Шоттки получают, используя переход металл-полупроводник. При этом применяют подложки из низкоомного n-кремния (или карбида кремния) с высокоомным тонким эпитаксиальным слоем того же полупроводника (рис.4).

Рис. 4. УГО и структура диода Шоттки: 1 – низкоомный исходный кристалл кремния, 2 – эпитаксиальный слой высокоомного кремния, 3 – область объемного заряда, 4 – металлический контакт

На поверхность эпитаксиального слоя наносят металлический электрод, обеспечивающий выпрямление, но не инжектирующий неосновные носители в базовую область (чаще всего золото). Благодаря этому в этих диодах нет таких медленных процессов, как накопление и рассасывание неосновных носителей в базе. Поэтому инерционность диодов Шоттки не высока. Она определяется величиной барьерной емкости выпрямляющего контакта (1 — 20 пФ).

Кроме этого, у диодов Шоттки оказывается значительно меньшее, чем у выпрямительных диодов последовательное сопротивление, так как металлический слой имеет малое сопротивление по сравнению с любым даже сильно легированным полупроводником. Это позволяет использовать диоды Шоттки для выпрямления значительных токов (десятки ампер). Обычно их применяют в импульсных вторичных источниках питания для выпрямления высокочастотных напряжений (частотой до нескольких МГц).

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Принцип работы и назначение диодов

Диод является одной из разновидностей приборов, сконструированных на полупроводниковой основе. Обладает одним p-n переходом, а также анодным и катодным выводом. В большинстве случаев он предназначен для модуляции, выпрямления, преобразования и иных действий с поступающими электрическими сигналами.

Что такое диод для чайников

Устройство

Ниже приводится подробное описание устройства диода, изучение этих сведений необходимо для дальнейшего понимания принципов действия этих элементов:

  1. Корпуспредставляет собой вакуумный баллон, который может быть изготовлен из стекла, металла или прочных керамических разновидностей материала.
  2. Внутри баллонаимеется 2 электрода. Первый является накаленным катодом, который предназначен для обеспечения процесса эмиссии электронов. Самый простейший по конструкции катод представляет собой нить с небольшим диаметром, которая накаливается в процессе функционирования, но на сегодняшний день более распространены электроды косвенного накала. Они представляют собой цилиндры, изготовленные из металла, и обладающие особым активным слоем, способным испускать электроны.
  3. Внутри катодакосвенного накалаимеется специфический элемент – проволока, которая накаливается под воздействием электрического тока, она называется подогреватель.
  4. Второй электродявляется анодом, он необходим для приема электронов, которые были выпущены катодом. Для этого он должен обладать положительным относительно второго электрода потенциалом. В большинстве случаев анод также имеет цилиндрическую форму.
  5. Оба электродавакуумных приборов полностью идентичны эмиттеру и базе полупроводниковой разновидности элементов.
  6. Для изготовления диодного кристаллачаще всего используется кремний или германий. Одна из его частей является электропроводимой по p-типу и имеет недостаток электронов, который образован искусственным методом. Противоположная сторона кристалла также имеет проводимость, но n-типа и обладает избытком электронов. Между двумя областями имеется граница, которая и называется p-n переходом.

Такие особенности внутреннего устройства наделяют диоды их главным свойством – возможностью проведения электрического тока только в одном направлении.

Назначение

Ниже приводятся основные области применения диодов, на примере которых становится понятно их основное назначение:

  1. Диодные мостыпредставляют собой 4, 6 или 12 диодов, соединенных между собой, их количество зависит от типа схемы, которая может быть однофазной, трехфазной полумостовой или трехфазной полномостовой. Они выполняют функции выпрямителей, такой вариант чаще всего используется в автомобильных генераторах, поскольку внедрение подобных мостов, а также использование вместе с ними щеточно-коллекторных узлов, позволило в значительной степени сократить размеры данного устройства и увеличить степень его надежности. Если соединение выполнено последовательно и в одну сторону, то это повышает минимальные показатели напряжения, которое потребуется для отпирания всего диодного моста.
  2. Диодные детекторыполучаются при комбинированном использовании данных приборов с конденсаторами. Это необходимо для того, чтобы было можно выделить модуляцию с низкими частотами из различных модулированных сигналов, в том числе амплитудно-модулированной разновидности радиосигнала. Такие детекторы являются частью конструкции многих бытовых потребителей, например, телевизоров или радиоприемников.
  3. Обеспечение защиты потребителей от неверной полярности при включении схемных входов от возникающих перегрузокили ключей от пробоя электродвижущей силой, возникающей при самоиндукции, которая происходит при отключении индуктивной нагрузки. Для обеспечения безопасности схем от возникающих перегрузок, применяется цепочка, состоящая из нескольких диодов, имеющих подключение к питающим шинам в обратном направлении. При этом, вход, которому обеспечивается защита, должен подключаться к середине этой цепочки. Во время обычного функционирования схемы, все диоды находятся в закрытом состоянии, но если ими было зафиксировано, что потенциал входа ушел за допустимые пределы напряжения, происходит активация одного из защитных элементов. Благодаря этому, данный допустимый потенциал получает ограничение в рамках допустимого питающего напряжения в сумме с прямым падением показателей напряжение на защитном приборе.
  4. Переключатели, созданные на основе диодов, используются для осуществления коммутации сигналов с высокими частотами. Управление такой системой осуществляется при помощи постоянного электрического тока, разделения высоких частот и подачи управляющего сигнала, которое происходит благодаря индуктивности и конденсаторам.
  5. Создание диодной искрозащиты. Используются шунт-диодные барьеры, которые обеспечивают безопасность путем ограничения напряжения в соответствующей электрической цепи. В совокупности с ними применяются токоограничительные резисторы, которые необходимы для ограничения показателей электрического тока, проходящего через сеть, и увеличения степени защиты.

Использование диодов в электронике на сегодняшний день весьма широко, поскольку фактически ни одна современная разновидность электронного оборудования не обходится без этих элементов.

Прямое включение диода

На p-n-переход диода может оказывать воздействие напряжение, подаваемое с внешних источников. Такие показатели, как величина и полярность, будут сказываться на его поведении и проводимом через него электрическом токе.

Ниже подробно рассмотрен вариант, при котором происходит подключение плюса к области p-типа, а отрицательного полюса к области n-типа. В этом случае произойдет прямое включение:

Что такое диод? Принцип работы в анимации. #диод #электроника #диодныймост

  1. Под воздействием напряженияот внешнего источника, в p-n-переходе сформируется электрическое поле, при этом его направление будет противоположным относительно внутреннего диффузионного поля.
  2. Напряжение полязначительно снизится, что вызовет резкое сужение запирающего слоя.
  3. Под воздействием этих процессовзначительное количество электронов обретет возможность свободно переходить из p-области в n-область, а также в обратном направлении.
  4. Показатели тока дрейфаво время этого процесса остаются прежними, поскольку они напрямую зависят только от числа неосновных заряженных носителей, находящихся в области p-n-перехода.
  5. Электроныобладают повышенным уровнем диффузии, что приводит к инжекции неосновных носителей. Иными словами, в n-области произойдет повышение количества дырок, а в p-области будет зафиксирована повышенная концентрация электронов.
  6. Отсутствие равновесия и повышенное число неосновных носителейзаставляет их уходить вглубь полупроводника и смешиваться с его структурой, что в итоге приводит к разрушению его свойств электронейтральности.
  7. Полупроводникпри этом способен восстановить свое нейтральное состояние, это происходит благодаря получению зарядов от подключенного внешнего источника, что способствует появлению прямого тока во внешней электрической цепи.

Обратное включение диода

Что такое диод для чайников

Теперь будет рассмотрен другой способ включения, во время которого изменяется полярность внешнего источника, от которого происходит передача напряжения:

  1. Главное отличие от прямого включения заключается в том, что создаваемое электрическое поле будет обладать направлением, полностью совпадающим с направлением внутреннего диффузионного поля. Соответственно, запирающий слой будет уже не сужаться, а, наоборот, расширяться.
  2. Поле, находящееся в p-n-переходе, будет оказывать ускоряющий эффект на целый ряд неосновных носителей заряда, по этой причине, показатели дрейфового тока останутся без изменений. Он будет определять параметры результирующего тока, который проходит через p-n-переход.
  3. По мере ростаобратного напряжения, электрический ток, протекающий через переход, будет стремиться достичь максимальных показателей. Он имеет специальное название – ток насыщения.
  4. В соответствии с экспоненциальным законом, с постепенным увеличением температуры будут увеличиваться и показатели тока насыщения.

Прямое и обратное напряжение

Напряжение, которое оказывает воздействие на диод, разделяют по двум критериям:

  1. Прямое напряжение– это то, при котором происходит открытие диода и начинается прохождение через него прямого тока, при этом показатели сопротивления прибора являются крайне низкими.
  2. Обратное напряжение– это то, которое обладает обратной полярностью и обеспечивает закрытие диода с прохождением через него обратного тока. Показатели сопротивления прибора при этом начинают резко и значительно расти.

Сопротивление p-n-перехода является постоянно меняющимся показателем, в первую очередь на него оказывает влияние прямое напряжение, подающееся непосредственно на диод. Если напряжение увеличивается, то показатели сопротивления перехода будут пропорционально уменьшаться.

Это приводит к росту параметров прямого тока, проходящего через диод. Когда данный прибор закрыт, то на него воздействует фактически все напряжение, по этой причине показатели проходящего через диод обратного тока являются незначительными, а сопротивление перехода при этом достигает пиковых параметров.

Работа диода и его вольт-амперная характеристика

Под вольт-амперной характеристикой данных приборов понимается кривая линия, которая показывает то, в какой зависимости находится электрический ток, протекающий через p-n-переход, от объемов и полярности напряжения, воздействующего на него.

Подобный график можно описать следующим образом:

  1. Ось, расположенная по вертикали:верхняя область соответствует значениям прямого тока, нижняя область параметрам обратного тока.
  2. Ось, расположенная по горизонтали:область, находящаяся справа, предназначена для значений прямого напряжения; область слева для параметров обратного напряжения.
  3. Прямая ветвь вольт-амперной характеристикиотражает пропускной электрический ток через диод. Она направлена вверх и проходит в непосредственной близости от вертикальной оси, поскольку отображает увеличение прямого электрического тока, которое происходит при увеличении соответствующего напряжения.
  4. Вторая (обратная) ветвьсоответствует и отображает состояние закрытого электрического тока, который также проходит через прибор. Положение у нее такое, что она проходит фактически параллельно относительно горизонтальной оси. Чем круче эта ветвь подходит к вертикали, тем выше выпрямительные возможности конкретного диода.
  5. По графику можно наблюдать, что после роста прямого напряжения, протекающего через p-n-переход, происходит медленное увеличение показателей электрического тока. Однако постепенно, кривая достигает области, в которой заметен скачок, после которого происходит ускоренное нарастание его показателей. Это объясняется открытием диода и проведением тока при прямом напряжении. Для приборов, изготовленных из германия, это происходит при напряжении равном от 0,1В до 0,2В (максимальное значение 1В), а для кремниевых элементов требуется более высокий показатель от 0,5В до 0,6В (максимальное значение 1,5В).
  6. Показанное увеличение показателей токаможет привести к перегреву полупроводниковых молекул. Если отведение тепла, происходящее благодаря естественным процессам и работе радиаторов, будет меньше уровня его выделения, то структура молекул может быть разрушена, и этот процесс будет иметь уже необратимый характер. По этой причине, необходимо ограничивать параметры прямого тока, чтобы не допустить перегрева полупроводникового материала. Для этого, в схему добавляются специальные резисторы, имеющие последовательное подключение с диодами.
  7. Исследуя обратную ветвьможно заметить, что если начинает увеличиваться обратное напряжение, которое приложено к p-n-переходу, то фактически незаметен рост параметров тока. Однако в случаях, когда напряжение достигает параметров, превосходящих допустимые нормы, может произойти внезапный скачок показателей обратного тока, что перегреет полупроводник и будет способствовать последующему пробою p-n-перехода.

Основные неисправности диодов

Иногда приборы подобного типа выходят из строя, это может происходить из-за естественной амортизации и старения данных элементов или по иным причинам.

Всего выделяют 3 основных типа распространенных неисправностей:

  1. Пробой переходаприводит к тому, что диод вместо полупроводникового прибора становится по своей сути самым обычным проводником. В таком состоянии он лишается своих основных свойств и начинает пропускать электрический ток в абсолютно любом направлении. Подобная поломка легко выявляется при помощи стандартного мультиметра, который начинает подавать звуковой сигнал и показывать низкий уровень сопротивления в диоде.
  2. При обрывепроисходит обратный процесс – прибор вообще перестает пропускать электрический ток в каком-либо направлении, то есть он становится по своей сути изолятором. Для точности определения обрыва, необходимо использовать тестеры с качественными и исправными щупами, в противном случае, они могут иногда ложно диагностировать данную неисправность. У сплавных полупроводниковых разновидностей такая поломка встречается крайне редко.
  3. Утечка, во время которой нарушается герметичность корпуса прибора, вследствие чего он не может исправно функционировать.

Пробой p-n-перехода

Подобные пробои происходят в ситуациях, когда показатели обратного электрического тока начинают внезапно и резко расти, происходит это из-за того, что напряжение соответствующего типа достигает недопустимых высоких значений.

Обычно различается несколько видов:

  1. Тепловые пробои, которые вызваны резким повышением температуры и последующим перегревом.
  2. Электрические пробои, возникающие под воздействием тока на переход.

График вольт-амперной характеристики позволяет наглядно изучать эти процессы и разницу между ними.

Электрический пробой

Последствия, вызываемые электрическими пробоями, не носят необратимого характера, поскольку при них не происходит разрушение самого кристалла. Поэтому при постепенном понижении напряжения можно восстановить всей свойства и рабочие параметры диода.

При этом, пробои такого типа делятся на две разновидности:

  1. Туннельные пробоипроисходят при прохождении высокого напряжения через узкие переходы, что дает возможность отдельно взятым электронам проскочить через него. Обычно они возникают, если в полупроводниковых молекулах имеется большое количество разных примесей. Во время такого пробоя, обратный ток начинает резко и стремительно расти, а соответствующее напряжение находится на низком уровне.
  2. Лавинные разновидности пробоеввозможны благодаря воздействию сильных полей, способных разогнать носителей заряда до предельного уровня из-за чего они вышибают из атомов ряд валентных электронов, которые после этого вылетают в проводимую область. Это явление носит лавинообразный характер, благодаря чему данный вид пробоев и получил такое название.

Тепловой пробой

Возникновение такого пробоя может произойти по двум основным причинам: недостаточный теплоотвод и перегрев p-n-перехода, который происходит из-за протекания через него электрического тока со слишком высокими показателями.

Повышение температурного режима в переходе и соседних областях вызывает следующие последствия:

  1. Рост колебания атомов, входящих в состав кристалла.
  2. Попаданиеэлектронов в проводимую зону.
  3. Резкое повышение температуры.
  4. Разрушение и деформацияструктуры кристалла.
  5. Полный выход из строяи поломка всего радиокомпонента.

Похожие статьи

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *